Monofunctional platinum-DNA adducts are strong inhibitors of transcription and substrates for nucleotide excision repair in live mammalian cells.

نویسندگان

  • Guangyu Zhu
  • MyatNoeZin Myint
  • Wee Han Ang
  • Lina Song
  • Stephen J Lippard
چکیده

To overcome drug resistance and reduce the side effects of cisplatin, a widely used antineoplastic agent, major efforts have been made to develop next generation platinum-based anticancer drugs. Because cisplatin-DNA adducts block RNA polymerase II unless removed by transcription-coupled excision repair, compounds that react similarly but elude repair are desirable. The monofunctional platinum agent pyriplatin displays antitumor activity in mice, a cytotoxicity profile in cell cultures distinct from that of cisplatin, and a unique in vitro transcription inhibition mechanism. In this study, we incorporated pyriplatin globally or site specifically into luciferase reporter vectors to examine its transcription inhibition profiles in live mammalian cells. Monofunctional pyriplatin reacted with plasmid DNA as efficiently as bifunctional cisplatin and inhibited transcription as strongly as cisplatin in various mammalian cells. Using repair-defective nucleotide excision repair (NER)-, mismatch repair-, and single-strand break repair-deficient cells, we show that NER is mainly responsible for removal of pyriplatin-DNA adducts. These findings reveal that the mechanism by which pyriplatin generates its antitumor activity is very similar to that of cisplatin, despite the chemically different nature of their DNA adducts, further supporting a role for monofunctional platinum anticancer agents in human cancer therapy. This information also provides support for the validity of the proposed mechanism of action of cisplatin and provides a rational basis for the design of more potent platinum anticancer drug candidates using a monofunctional DNA-damaging strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcription inhibition by platinum-DNA cross-links in live mammalian cells.

We have investigated the processing of site-specific Pt-DNA cross-links in live mammalian cells to enhance our understanding of the mechanism of action of platinum-based anticancer drugs. The activity of platinum drugs against cancer is mediated by a combination of processes including cell entry, drug activation, DNA-binding, and transcription inhibition. These drugs bind nuclear DNA to form Pt...

متن کامل

Mechanism of the formation of DNA–protein cross-links by antitumor cisplatin

DNA-protein cross-links are formed by various DNA-damaging agents including antitumor platinum drugs. The natures of these ternary DNA-Pt-protein complexes (DPCLs) can be inferred, yet much remains to be learned about their structures and mechanisms of formation. We investigated the origin of these DPCLs and their cellular processing on molecular level using gel electrophoresis shift assay. We ...

متن کامل

DNA-protein cross-linking by trans-[PtCl(2)(E-iminoether)(2)]. A concept for activation of the trans geometry in platinum antitumor complexes.

The structure-pharmacological activity relationships generally accepted for antitumor platinum compounds stressed the necessity for the cis-[PtX(2)(amine)(2)] structure while the trans-[PtX(2)(amine)(2)] structure was considered inactive. However, more recently, several trans-platinum complexes have been identified which are potently toxic, antitumor-active and demonstrate activity distinct fro...

متن کامل

Visualizing inhibition of nucleosome mobility and transcription by cisplatin-DNA interstrand crosslinks in live mammalian cells.

Cisplatin is a widely used anticancer drug that acts by binding DNA and causing the formation of intrastrand and interstrand (ICL) crosslinks, but the precise downstream effects of the latter damage are not well understood. In this study, we investigated the influence of cisplatin ICLs on synthetic nucleosomes that were platinated in a site-specific manner in vitro and on gene transcription in ...

متن کامل

Influence of irofulven, a transcription-coupled repair-specific antitumor agent, on RNA polymerase activity, stability and dynamics in living mammalian cells.

Transcription-coupled repair (TCR) plays a key role in the repair of DNA lesions induced by bulky adducts and is initiated when the elongating RNA polymerase II (Pol II) stalls at DNA lesions. This is accompanied by alterations in Pol II activity and stability. We have previously shown that the monofunctional adducts formed by irofulven (6-hydroxymethylacylfulvene) are exclusively recognized by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 72 3  شماره 

صفحات  -

تاریخ انتشار 2012